If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+51x+27=0
a = 10; b = 51; c = +27;
Δ = b2-4ac
Δ = 512-4·10·27
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-39}{2*10}=\frac{-90}{20} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+39}{2*10}=\frac{-12}{20} =-3/5 $
| 14=7x=5-4x | | -4b+2b=10 | | 2/3x-1=1/6x-3 | | 012c−4=14c−10 | | -32=-u/9 | | 18x-x+5x=10x+2x-10 | | 3.4=6.2-0.7x | | 2x=x=180 | | 2(9x=6(x+4) | | 2(9x=6(x+4 | | 4(0.5-w)=18 | | 9(u-2)=-5u+24 | | 100-9x=1 | | r+2/3=r+3/2 | | 3c+20=11 | | 2(n-5)=36 | | 2w+7=-9 | | x^2−5=73 | | x=2=x=45+180 | | -8=-6+v | | 23=7/9(6z-36)+9 | | 4/x-1=x+1/6 | | -4(2x+7)=16 | | 2x2−12x+18=0 | | -12=5r=8 | | 2(5x+4)=4 | | 2(2l+5)=38 | | 5x+4/9=1/6 | | 2(3x-5=14 | | 40=8(x-5) | | -6u+4(u-8)=-12 | | 5x-3=`15x-103 |